Formation and structures of $\operatorname{Pd}(I I) N, S$-heterocyclic carbene-pyridyl mixed-ligand complexes

Swee Kuan Yen, Lip Lin Koh, Han Vinh Huynh, T.S. Andy Hor*
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Kent Ridge, Singapore 117543, Republic of Singapore

A R T I C L E I N F O

Article history:

Received 30 September 2008
Received in revised form 29 October 2008
Accepted 30 October 2008
Available online 6 November 2008

Keywords:

Palladium
N, S-heterocyclic carbene
Pyridyl
Thiazolium
Anagostic

Abstract

Mononuclear mixed-ligand complexes of $\mathrm{Pd}(\mathrm{II})$ containing a N, S-heterocyclic carbene (NSHC) with a secondary alkyl N-substituent and pyridyl ligand, with the general formula [$\left.\mathrm{PdI}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NS}\right) \mathrm{L}\right]\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NS}=3\right.$ -isopropylbenzothiazolin-2-ylidene; $\mathrm{L}=$ pyridine, 2 -aminopyridine, 3 -iodopyridine and 4 -tert-butyl-pyridine) have been synthesized and characterized by X-ray single-crystal crystallography. Both solution and solid-state structures, as evident from their ${ }^{1} \mathrm{H}$ NMR spectra and X-ray structures, show anagostic γ hydrogen interactions of metal with methine of the substituent on the carbene or pyridyl ligand giving 5-membered-chelate-like structures.

© 2008 Published by Elsevier B.V.

1. Introduction

The growing interest of the organometallic and catalytic chemistry of N -heterocyclic (NHC) carbenes [1-4] has led to the emergence of carbenes that are stabilized by different types of heterocycles [5-12], notably N, S-heterocyclic (NSHC) carbenes [13-22]. Presence of sulfur without an exocyclic substituent offers an alternative in catalyst design to the use of bulky substituents on nitrogen in NHC ligands. Accordingly, a series of Pd(II) NSHC complexes [23,24] and their use as precursors to NSHC-based mixed-ligand complexes have been reported [25,26]. Introduction of a second hetero-ligand provides a simple and versatile means to tune the electronic and steric properties of the resultant complex and its chemical and catalytic behaviors. Similar development is witnessed in the mixed-ligand NHC complexes [27-35] especially in pyridyl carbene complexes. In our earlier report, 3-substituted benzothiazolium salts are conveniently prepared from benzothiazole and suitable primary alkyl halides [23-26]. We herein report an extension of this methodology to secondary alkyl halides and the structural features of the resultant series of carbene-pyridyl complexes. The use of pyridyl as a second ligand to enhance the catalytic activities is probably best represented by the PEPPSI ${ }^{\text {m }}$ system [36-42]. It is common knowledge that the nature of the alkyl/ aryl substituent would influence the catalytic performance whereas many highly active catalysts are found in NHC ligands

[^0]that bear a sterically hindered substituent to facilitate the reductive elimination step [2,43-49].

2. Results and discussion

2.1. Neat synthesis of benzothiazolium salt \boldsymbol{A}

3-Isopropylbenzothiazolium tri-iodide $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NS}^{+} \mathrm{I}_{3}^{-}$, A, forms readily from the reaction of benzothiazole in neat 2 -iodopropane (excess). Unlike the related 1,3-diisopropylbenzimidazolin-2-ylidene analogue, $i \mathrm{Pr}_{2}$-bimyH ${ }^{+} \mathrm{I}^{-}$[50], it is isolated in its tri-iodide form, presumably from iodide and iodine addition reaction. The formation of iodine, which notably appears as a purple solid on the wall of the condenser at the conclusion of the reaction, could be traced to photo-activation of alkyl iodide giving alkyne and iodine in a radical mechanism [51]. The somewhat unsatisfactory yield (32\%) is attributed to base-assisted Hofmann elimination of 3-isopropylbenzothiazolium iodide to propene and benzothiazole (Scheme 1). The yield of A can be raised to 44% when iodine is added to the reaction. The product as a salt is soluble in common organic solvents (e.g. halogenated solvents, $\mathrm{ROH}, \mathrm{THF}, \mathrm{CH}_{3} \mathrm{CN}$, DMSO, DMF) and water, and generally more soluble than 3-ben-zyl-, 3-(2-propenyl)- and 3-propylbenzothiazolium bromides [23-26].

The thiazolium proton (SCHN) resonance is characteristically downfield shifted (11.52 ppm). It is also more deshielded compared to $i \mathrm{Pr}_{2}$-bimyH ${ }^{+} \mathrm{I}^{-}(10.79 \mathrm{ppm})$ [50] which is expected. The downfield-shift of the thiazolium carbon ($\delta \mathrm{C}=163.1 \mathrm{ppm}$)

Scheme 1. Proposed formation pathway of benzothiazolium salt A and side products.
by $\sim 20 \mathrm{ppm}$ compared to the azolium carbon in $i \mathrm{Pr}_{2}$ - $\mathrm{bimyH}^{+} \mathrm{X}^{-}$ ($\mathrm{X}=\mathrm{I}, 139.5$ [50]; $\mathrm{X}=\mathrm{Br}, 140.7 \mathrm{ppm}$ [52]) is also within expectation. The positive mode ESI mass spectrum shows a principal peak at $m / z=178$ corresponding to the thiazolium cation. X-ray singlecrystal diffraction of A confirmed the identity of the 3-isopropyl substituted benzothiazolium cation with the linear tri-iodide anion (Fig. 1).

Fig. 1. ORTEP representation of \mathbf{A} with 50% thermal ellipsoids and labeling scheme; hydrogen atoms are omitted for clarity.

2.2. Synthesis of mononuclear palladium(II) mixed-ligand complexes via the dinuclear complex

A 1:1 mixture of molar of $\operatorname{Pd}(\mathrm{OAc})_{2}$ and \mathbf{A} stoichiometrically reacts to give $\left[\operatorname{PdI}(\mu-I)\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NS}\right)\right]_{2}(\mathbf{1})$, using a modified procedure reported for $[\operatorname{PdBr}(\mu-\mathrm{Br})(\mathrm{NSHC})]_{2} \quad[\mathrm{NSHC}=3$-benzylbenzothiazo-lin-2-ylidene] [23]. The disappearance of the downfield SCHN proton resonance infers successful complexation. This is substantiated by the carbenoid resonance $\left({ }^{13} \mathrm{C}\right)$ at 184.0 ppm which was not detected in $[\operatorname{PdBr}(\mu-\mathrm{Br})(\mathrm{NSHC})]_{2}[\mathrm{NSHC}=3$-benzyl- and 3-propyl-benzothiazolin-2-ylidene] [23,25], due to lower solubility of the latter.

The isopropyl methine proton (6.22 ppm) is significantly downfield shifted ($\Delta 0.71 \mathrm{ppm}$) compared to \mathbf{A} (5.51 ppm), which could be explained by an intramolecular electrostatic anagostic $\mathrm{C}-\mathrm{H} \cdots \mathrm{Pd}$ interaction, which is substantiated by the solid-state structure described below.

Using the reported method [23-26], mononuclear Pd(II) complexes 2-5 with mixed-ligands can be easily prepared through a bridge-cleavage reaction in $70-90 \%$ yields from 1 with addition

A

> DMSO
> $70^{\circ} \mathrm{C}$
> -2 HOAC

1

Scheme 2. Synthesis of palladium(II) carbene-pyridyl complexes 1-5.

Table 1
Comparison of selected spectroscopic and structural data of benzothiazolium \mathbf{A} and its complexes 1-5.

	\mathbf{A}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\delta\left({ }^{1} \mathrm{H}\right): \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{ppm})$	5.51^{b}	6.22^{c}	6.57^{b}	6.54^{b}	6.53^{b}	6.58^{b}
$\delta \mathrm{H}(\Delta \delta \mathrm{H})^{\mathrm{a}}(\mathrm{ppm})$	-	0.71	1.06	1.03	1.02	1.07
$\delta\left({ }^{13} \mathrm{C}\right): \mathrm{C}_{\text {carbene }}(\mathrm{ppm})$	163.1^{b}	184.0^{c}	189.4^{b}	191.6^{b}	187.8^{b}	189.0^{b}
$d(\mathrm{C}-\mathrm{H} \cdots \mathrm{Pd})(\AA)$		2.66	2.68	2.67	2.66	$2.64,2.70$
$\theta(\mathrm{C}-\mathrm{H} \cdots \mathrm{Pd})\left({ }^{\circ}\right)$		122.6	122.6	123.0	123.0	123.2
						122.5

a $\Delta \delta \mathrm{H}=\delta \mathrm{H}\left(\mathrm{CHMe}_{2}\right.$ in complex $)-\delta \mathrm{H}\left(\mathrm{CHMe}_{2}\right.$ in $\left.\mathbf{A}\right)$.
${ }^{\mathrm{b}}$ Recorded in CDCl_{3}.
${ }^{\text {c }}$ Recorded in DMSO- d_{6}.
of donors, viz. pyridine, 2-aminopyridine, 3-iodopyridine and 4-tert-butyl-pyridine (Scheme 2). The isopropyl methine protons of 2-5 ($6.53-6.58 \mathrm{ppm}$) show similar shifts compared to \mathbf{A} ($\Delta H=1.02-1.07 \mathrm{ppm}$) (Table 1). The pendant amine on the pyridine ring in $\mathbf{3}$ gives a broad singlet at 5.38 ppm downfield shifted from the free ligand (broad singlet, 4.69 ppm), possibly attributed to restricted $\mathrm{C}-\mathrm{NH}_{2}$ free rotation due to intramolecular H -bonding [64]. The ${ }^{13} \mathrm{C}$ NMR signals $\left(\mathrm{CDCl}_{3}\right)$ of the carbenoid carbons of $\mathbf{2 - 5}$ (2: 189.4, 3: 191.6, 4: 187.8 and 5: 189.9 ppm) (Table 1) are deshielded compared to the parent complex 1. This could be explained by the inductive effect of the N -donor ligand that lowers the Lewis-acidity of the $\operatorname{Pd}(\mathrm{II})$ center.

2.3. Molecular structures

X-ray single-crystal diffraction studies were carried out on 1-5 (Figs. 2-6 and Tables 2 and 3). Complex 1, which crystallizes as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate ($\mathbf{1} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$), is a dinuclear planar $\mathrm{Pd}(\mathrm{II})$ complex with doubly bridging iodide (Fig. 2). The two NHC carbenes across the coordination plane are anti to each other. The carbene ring planes are almost perpendicular to the $\left[\mathrm{Pd}_{2} \mathrm{C}_{2} \mathrm{I}_{4}\right]$ coordination plane with a dihedral angle measured at 88.6°. The two N -isopropyl substituents are on the opposite sides of the metal coordination plane, thus minimizing any inter-ligand contacts. The Pd-I bonds can be divided into three types with significantly different lengths. The terminal Pd-I is understandably the shortest (2.5856(6) \AA) whereas the bridged bonds that are trans to the carbenes are the longest (2.6594(7) \AA), due to the strong trans influence of the NSHC carbene. In agreement with the ${ }^{1} \mathrm{H}$ NMR data, the isopropyl CH groups are orientated toward the metal center with C-H...Pd at $2.66 \AA$ and C-H \cdots Pd angles 122.6°, which lie within the broad range of $2.3-2.9 \AA$ and $110-170^{\circ}$ respectively reported for weak anagostic interactions [53-63]. Such electrostatic contact in sq planar d^{8} system could involve interaction of the $\operatorname{Pd}(\mathrm{II})$ filled d_{z}^{2} or $d_{x z / y z}$ orbital and the C-H σ^{*} orbital [53-63]. Albinati, Pregosin and co-workers have reported such $\mathrm{C}-\mathrm{H} \cdots \mathrm{M}\left(\mathrm{M}=\mathrm{Pt}^{\mathrm{II}}\right.$ or $\left.\mathrm{Pd}^{\mathrm{II}}\right)$ inter-

Fig. 2. ORTEP representation of compound 1 with 50% thermal ellipsoids and labeling scheme. The hydrogen atoms except those involved in metal interactions are removed to improve clarity.

Fig. 3. ORTEP representation of compound 2 with 50% thermal ellipsoids and labeling scheme. The hydrogen atoms except that involved in metal interaction are removed to improve clarity.

Fig. 4. ORTEP representation of complex 3 with 50% thermal ellipsoids and labelling scheme. The hydrogen atoms except those involved in metal interactions are removed to improve clarity.

Fig. 5. ORTEP representation of compound 4 with 50% thermal ellipsoids and labeling scheme. The hydrogen atoms except that involved in metal interaction are removed to improve clarity.
actions in non-carbene systems [64-66]. Similar phenomena have also been observed in a $\mathrm{Rh}(\mathrm{I})$ complex with a six or seven-membered NHC ring [7,67,68] and d^{8} NHC complexes [50,53-58,69].

As expected, all complexes 2-5 are isostructural and mononuclear, with trans-configuration for pyridyl and carbene ligands in an essentially sq planar Pd(II) sphere (Figs. 3-6). The Pd-C bond in $2\left[1.954(4) \AA\right.$] and that in $\left[\mathrm{PdBr}_{2}(\mathrm{NHC})\right.$ (pyridine)] ($\mathrm{NHC}=1,3-$ diisopropylbenzimidazolin-2-ylidene) [1.953(4) Å] are comparable (Fig. 3) [70]. The shorter Pd- $\mathrm{N}_{\text {pyridine }}$ [2.088(4) Å] in 2 (compared to 2.113(3) Å in the Pd-benzimidazolyl analogue) [70] however could reflect a slightly lower trans-influence of NHSC compared to NHC ligands.

The 2-aminopyridyl ring of $\mathbf{3}$ is twisted away from coplanarity with the coordination plane such that one of the protons of the pendant amine shows H-bonding interaction with the metal ($\mathrm{N}-\mathrm{H}(3 \mathrm{~A}) \cdots \mathrm{Pd}(1) 2.67 \AA$) above the metal plane (Fig. 4). Below the plane, the isopropyl proton γ-interacts with the metal (C8-H8 $\ldots \operatorname{Pd}(1) 2.67 \AA$), thus effectively resulting in a [4+2]

Fig. 6. ORTEP representation of both independent molecules in the asymmetric unit cell of $\mathbf{5}$ with 50% thermal ellipsoids and labeling scheme. The hydrogen atoms except that involved in metal interactions are removed to improve clarity.
pseudo-octahedral structure for $\operatorname{Pd}(\mathrm{II})$. The C-N bond (1.319(8) \AA) of amine on the pyridine ring is significantly shorter than a normal amine $\mathrm{C}-\mathrm{N}\left(\mathrm{H}_{2}\right)$ single bond ($\sim 1.44 \AA$), indicating substantial π character arising from electron delocalization of the amine lone pair to the pyridyl ring [71].

Similar anagostic interactions between the isopropyl proton and metal is invariably found in 2-5 (2.64-2.70 \AA). This is supported by the decrease of the C1-N1-C8 angle from $124.40(2)^{\circ}$ in A to $120.30(5)-121.00(5)^{\circ}$ in 1-5 despite the replacement of H by a much larger Pd atom (Table 2). The persistent anagostic interactions in solution and solid-state represents a structural feature of this series of complexes. The pertinent spectroscopic and structural data that support these interactions are listed in Table 1.

The carbene ring planes of complexes $\mathbf{2}$ and 4-5 are twisted out of the $\left\{\mathrm{PdCNI}_{2}\right\}$ coordination planes to give near-perpendicular (89.2-91.8 ${ }^{\circ}$) dihedral angles in order to minimize steric conflict. The Pd- $\mathrm{C}_{\text {carbene }}$ bonds (1.938(5)-1.956(4) \AA) of complexes 2-5 are slightly shorter and presumably stronger than those in the precursor complex 1 (1.968(6) Å) indicating the higher trans influence of iodide than pyridyl. The Pd-N bonds (2.086(4)-2.108(5) \AA) of $2-$ 5 are within the range but generally slightly shorter than those found in the analogous PEPPSI-IPr and PEPPSI with N/O-functionalized NHCs [2.089(3)-2.137(2) \AA] [36,46]. This is also suggestive of higher trans influence of NHC compared to NSHC ligands.

Table 2
Selected bond lengths (\AA) and angles (${ }^{\circ}$) of A and 1-5.

Bond lengths (\AA)	A	1	2	3	4	5		
						Molecule a	Molecule b	
Pd1-C1	-	1.968(6)	1.954(4)	1.956(4)	1.948(6)	1.946(6)	Pd2-C20	1.938(5)
Pd1-N2	-	-	2.088(4)	2.095(4)	2.108(5)	2.106(5)	Pd2-N4	2.086(4)
Pd1-I1	-	2.659(7)	2.604(5)	2.603(4)	2.594(7)	2.589(6)	Pd2-I4	2.6088(6)
Pd1-I1\#2	-	2.619(6)	-	-	-	-		
Pd1-I2	-	2.586(6)	2.610(5)	2.615(5)	2.611(7)	2.603(7)	Pd2-I3	2.6091(6)
Pd1\#2-I1	-	2.620(2)	-	-	-	-		
S1-C1	1.681(3)	1.691(6)	1.717(5)	1.716(5)	1.715(6)	1.711(6)	S2-C20	1.709(5)
N1-C1	1.311(4)	1.325(7)	1.329(6)	1.329(5)	1.329(8)	1.335(7)	N3-C20	1.334(6)
N1-C8	1.498(3)	1.478(8)	1.495(6)	1.491(5)	1.488(8)	1.485(8)	N3-C27	1.495(7)
C8-C9	1.519(4)	1.531(11)	1.512(7)	1.502(7)	1.514(12)	1.514(10)	C27-C28	1.514(10)
C8-C10	1.514(5)	1.545(12)	1.518(8)	1.524(6)	1.535(11)	1.520(10)	C27-C29	1.500(9)
C12-N3	-	-	-	1.319(8)	-	-		
C13-C16	-	-	-	-	-	1.534(8)	C32-C35	1.525(8)
C16-C17	-	-	-	-	-	1.525(11)	C35-C37	1.545(9)
C16-C18	-	-	-	-	-	1.515(10)	C35-C38	1.522(10)
C16-C19	-	-	-	-	-	1.509(10)	C35-C36	1.525(9)
I3-C12	-	-	-	-	2.090(7)	-		
Angles (${ }^{\circ}$)								
C1-Pd1-N2	-	-	178.03(2)	178.41(2)	178.80(2)	179.10(2)	C20-Pd2-N4	175.7(2)
C1-Pd1-I1	-	128.87(2)	88.25(1)	87.50(1)	86.78(2)	86.62(2)	C20-Pd2-I4	88.56(17)
C1-Pd1-I2	-	87.89(2)	89.84(1)	89.60(1)	88.45(2)	87.19(2)	C20-Pd2-I3	86.08(17)
C1-Pd1-I1\#2	-	91.79(2)	-	-	-	-		
I1-Pd1-I2	-	92.67(2)	177.07(2)	176.96(2)	174.18(3)	173.78(2)	I4-Pd3-I3	174.41(2)
I1\#2-Pd1-I1	-	87.67(2)		-	-			
I2-Pd1-I1\#2	-	178.84(3)	-	-	-	-		
I1-Pd1-N2	-		90.41(1)	91.52(1)	93.50(2)	94.15(1)	I4-Pd2-N4	91.50(13)
I2-Pd1-N2	-	-	91.56(1)	91.39(1)	91.34(2)	92.04(1)	I3-Pd2-N4	93.97(13)
I2-I1-I3	177.95(8)	-	-	-	-	-		
N1-C1-S1	115.00(2)	112.10(4)	111.40(3)	111.30(3)	111.00(4)	111.50(4)	N3-C20-S2	110.9(4)
N1-C1-Pd1	-	127.50(4)	128.50(3)	128.40(3)	128.30(4)	127.30(4)	N3-C20-Pd2	129.7(4)
S1-C1-Pd1	-	120.50(3)	120.10(2)	120.3(2)	120.70(3)	121.10(3)	S2-C20-Pd2	119.4(3)
C1-N1-C8	124.40(2)	121.00(5)	120.90(4)	120.60(4)	120.30(5)	120.80(5)	C20-N3-C27	120.5(5)
C9-C8-C10	112.90(3)	115.10(7)	115.90(5)	114.90(4)	114.20(7)	115.00(6)	C28-C27-C29	116.1(6)
N1-C8-C9	109.10(2)	110.60(6)	110.70(4)	111.60(4)	111.30(6)	111.00(6)	N3-C27-C28	110.4(5)
N1-C8-C10	111.30(2)	110.30(7)	111.10(4)	111.20(4)	111.40(6)	111.70(5)	N3-C27-C29	111.6(5)
N2-C12-N3				118.40(5)	-	-		
C13-C12-N3	-	-	-	119.70(6)	-	-		
C17-C16-C13	-	-	-	-	-	110.00(6)	C37-C35-C32	107.9(5)
C18-C16-C13	-	-	-	-	-	112.00(6)	C38-C35-C32	112.3(5)
C18-C16-C17	-	-	-	-	-	108.80(7)	C38-C35-C37	107.9(6)
C19-C16-C13	-	-	-	-	-	108.10(6)	C36-C35-C32	108.9(5)
C19-C16-C17	-	-	-	-	-	108.90(6)	C36-C35-C37	110.0(6)
C19-C16-C18	-	-	-	-	-	109.00(7)	C36-C35-C38	109.8(6)

Table 3
Selected crystallographic data of A and 1-5.

	A	1	2	3	4	5
Formula	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{I}_{3} \mathrm{~N}_{1} \mathrm{~S}_{1}$	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Pd}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{Pd}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{I}_{2} \mathrm{~N}_{3} \mathrm{~S}_{1} \mathrm{Pd}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{I}_{3} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{Pd}$	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{Pd}$
Formula weight	558.97	1124.39	616.56	631.58	742.45	672.66
Color, habit	Red, block	Red, block	Orange, block	Yellow, plate	Orange, block	Orange, block
Crystal size (mm^{3})	$0.40 \times 0.38 \times 0.18$	$0.22 \times 0.12 \times 0.10$	$0.36 \times 0.12 \times 0.10$	$0.26 \times 0.12 \times 0.06$	$0.44 \times 0.28 \times 0.12$	$0.36 \times 0.30 \times 0.14$
Temperature (K)	293(2)	223(2)	223(2)	223(2)	295(2)	223(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	P2(1)/n	C2/c	P2(1)/n	P2(1)/n	Pbca	P2(1)/n
$a(\AA)$	11.8255(5)	13.5986(12)	9.9163(6)	9.8906(6)	16.2344(7)	9.2994(12)
$b(A)$	9.8827(5)	13.2155(12)	12.5278(8)	12.6917(8)	14.9728(7)	14.6385(17)
$c(A)$	13.5113(6)	18.1317(16)	15.3999(9)	15.6072(10)	16.8210(8)	33.984(4)
$\alpha\left({ }^{\circ}\right)$	90	90	90	90	90	90
$\beta\left({ }^{\circ}\right)$	105.5350(10)	94.571(2)	91.4490(10)	90.075(2)	90	96.611(3)
$\gamma\left({ }^{\circ}\right)$	90	90	90	90	90	90
$V\left(\AA^{3}\right)$	1521.35(12)	3248.1(5)	1912.5(2)	1959.1(2)	4088.8(3)	4595.5(10)
Z	4	4	4	4	8	8
$D_{\text {calcd. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.440	2.299	2.141	2.141	2.412	1.944
Radiation used	Mo K α					
$\mu\left(\mathrm{mm}^{-1}\right)$	6.274	5.133	4.303	4.205	5.538	3.590
θ range (${ }^{\circ}$)	2.04-27.50	2.15-27.50	2.10-27.50	2.07-27.49	2.21-27.50	1.52-27.50
Unique data	19172	11334	13099	13656	27562	32411
[$R_{\text {(int) }}$]	0.0217	0.0252	0.0272	0.0347	0.0435	0.0386
Maximum, minimum transmission	0.3980, 0.1881	0.6278, 0.3981	0.6729, 0.3065	0.7865, 0.4078	0.5562, 0.1943	0.6333, 0.3581
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0206 \\ & w R_{2}=0.0497 \end{aligned}$	$\begin{aligned} & R_{1}=0.0463 \\ & w R_{2}=0.1234 \end{aligned}$	$\begin{aligned} & R_{1}=0.0384 \\ & w R_{2}=0.0864 \end{aligned}$	$\begin{aligned} & R_{1}=0.0348 \\ & w R_{2}=0.0788 \end{aligned}$	$\begin{aligned} & R_{1}=0.0523 \\ & w R_{2}=0.1100 \end{aligned}$	$\begin{aligned} & R_{1}=0.0502 \\ & w R_{2}=0.1090 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0226 \\ & w R_{2}=0.0606 \end{aligned}$	$\begin{aligned} & R_{1}=0.0647 \\ & w R_{2}=0.1340 \end{aligned}$	$\begin{aligned} & R_{1}=0.0474 \\ & w R_{2}=0.0903 \end{aligned}$	$\begin{aligned} & R_{1}=0.0494 \\ & w R_{2}=0.0840 \end{aligned}$	$\begin{aligned} & R_{1}=0.0604 \\ & w R_{2}=0.1134 \end{aligned}$	$\begin{aligned} & R_{1}=0.0672 \\ & w R 2=0.1154 \end{aligned}$
Goodness-of-fit (GOF) on F^{2}	1.097	1.050	1.062	0.983	1.242	1.104
Peak/hole (e \AA^{-3})	0.706/-0.718	2.300/-1.243	2.132/-0.935	1.138/-0.437	1.505/-0.618	1.368/-0.921

3. Conclusion

Introduction of a secondary alkyl on nitrogen in the benzothiazolium ring or an amine at the α-position to a pyridyl invariably gives rise to γ-hydrogen interactions with the metal resulting in 5-membered-ring chelate-like structures. The d^{8} sq planar $\mathrm{Pd}(\mathrm{II})$ thus takes up a pseudo-sq pyramidal or octahedral geometry. Although anagostic interactions are usually found in d^{8} metals, they are occasionally associated with other systems such as $\mathrm{Cu}(\mathrm{II})$ $\left(d^{9}\right)$ [72,73]. There are emerging discussions on the significance of such bonding [63] and possible applications in bio-active systems [74]. This provides an impetus for us to examine if such dual γ interactions from a mixed-ligand motif can be applied to stabilize non $-d^{8}$ systems. Work is ongoing in this direction.

4. Experimental

4.1. General procedures

Unless otherwise stated, all manipulations were performed without taking precautions to exclude air and moisture. All solvents were used as received. Benzothiazole was purchased from Sigma-Aldrich ${ }^{\otimes}$ and distilled prior to use. 2-Iodo-propane, 2-aminopyridine, 3 -iodopyridine, 4-tert-butyl-pyridine and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were purchased from Sigma-Aldrich ${ }^{\circledR}$ and used as received. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AMX 500 spectrometers using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. ESI mass spectra were obtained using a Finnigan MAT 731 LCQ spectrometer. Elemental analyses were performed on a Perkin-Elmer PE 2400 elemental analyzer at the Department of Chemistry, National University of Singapore.

4.2. 3-Isopropylbenzothiazolium tri-iodide (A)

A mixture of neat benzothiazole ($3.74 \mathrm{~g}, 27.65 \mathrm{mmol}$) and 2-iodo-propane ($15.33 \mathrm{~g}, 90.16 \mathrm{mmol}$) was stirred at $100^{\circ} \mathrm{C}$ for 2 days. The brown oil thus obtained was washed several times with
ethyl acetate to afford yellow solid. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution yielded transparent crystals suitable for Xray diffraction studies. Yield: $4.91 \mathrm{~g}(8.78 \mathrm{mmol}, 32 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHS}), 8.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.90\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.90 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.80\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.88 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 5.51\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.63 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.90 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.1$ (s, NCHS), 140.1, 131;6, 130.3, 129.2, 125.8, 117.1 (s, $\operatorname{Ar-C}$), $57.4\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.6\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) . \mathrm{MS}$ (ESI, positive mode) $\mathrm{m} / \mathrm{z}(\%): 178$ (100) $\left[\mathrm{M}-\mathrm{I}_{3}\right]^{+}$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{I}_{3} \mathrm{NS}(\mathrm{M}=558.99)$: C, 21.49; H, 2.16; $\mathrm{N}, 2.51$; S, 5.74. Found: C, 21.81; H, 2.16; N, 2.54; S, 5.12\%.

4.3. Diiodo(μ-diiodo)bis(3-isopropylbenzothiazolin-2-ylidene)dipalladium(II) (1)

Complex 1 was prepared based on a literature method [29] from A ($559 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{OAc})_{2}(225 \mathrm{mg}, 1 \mathrm{mmol})$. Purification by column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as effluent gave $\mathbf{1}$ as a red solid. Slow evaporation of a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution yielded red crystals suitable for X-ray diffraction studies. Yield: 193 mg ($0.18 \mathrm{mmol}, 36 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.24$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 8.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, $7.56\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.55 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.50\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.55 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\right.$ H), $6.22\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.95 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.95 \mathrm{~Hz}\right.$, $\left.12 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , DMSO- d_{6}): $\delta 184.0$ (s, NCS), 140.7, 137.9, 127.4, 125.6, 123.2, 116.9 (s, Ar-C), 55.4 (s, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $18.7\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. MS (ESI, positive mode) $\mathrm{m} / \mathrm{z}(\%)$: 1019 (100) $\quad\left[\mathrm{M}-\mathrm{I}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Pd}_{2}(\mathrm{M}=1074.99)$: C, 22.35; H, 2.06; $\mathrm{N}, 2.61 ; \mathrm{S}, 5.97$. Found: C, 22.67; H, 2.02; N, 2.51; S, 6.30\%.

4.4. trans-Diiodo(3-isopropylbenzothiazolin-2-ylidene)(pyridine)palladium(II) (2)

Pyridine (5 mL) was added to complex 1 ($602 \mathrm{mg}, 0.056 \mathrm{mmol}$) and the mixture was stirred overnight at r.t. The clear yellow solution thus obtained was evaporated to dryness under vacuum. The
solid product 2 was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ onto which was layered $\mathrm{Et}_{2} \mathrm{O}$ to give yellow single-crystals upon standing. Yield: 678 mg ($0.11 \mathrm{mmol}, ~ 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.06$ (d, $\left.{ }^{3} J_{\mathrm{HH}}=6.30 \mathrm{~Hz}, 2 \mathrm{H}, 2,6-\mathrm{py}-\mathrm{H}\right), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.15 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{py}-\mathrm{H}\right)$, $7.75(\mathrm{~m}, 2 \mathrm{H}, 3,5-\mathrm{py}-\mathrm{H}), 7.44\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.90 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.38-$ $7.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.57\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.95 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.4$ (s, NCS), 154.1, 141.3, 138.9, 137.8, 126.0, 124.6, 122.2, 115.8 (s, py-C and $\mathrm{Ar}-\mathrm{C}$), 63.4 (s, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $19.2\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. MS (ESI, positive mode) $\mathrm{m} / \mathrm{z}(\%): 587$ (100) [M-I + 3CH3OH] ${ }^{+}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{SPd}(\mathrm{M}=616.59)$: C, 29.22; H, 2.62; $\mathrm{N}, 4.54$; S, 5.20. Found: C, 30.95 ; H, 2.66; N, 4.72; S, 5.64%.

4.5. trans-Diiodo(3-isopropylbenzothiazolin-2-ylidene)(2-aminopyridine)palladium(II) (3)

A mixture of 1 ($110 \mathrm{mg}, 0.102 \mathrm{mmol}$) and 2-aminopyridine ($19 \mathrm{mg}, 0.204 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and stirred overnight at r.t. Upon solvent evaporation under vacuum, the yellow solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ several times. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution yielded yellow crystals suitable for X-ray diffraction studies. Yield: $100 \mathrm{mg}(0.158 \mathrm{mmol}$, 77%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 1 \mathrm{H}, 2-\right.$ py-H), 7.78 (m, 1H, 3-py-H), 7.55-7.49 (m, 1H, Ar-H), 7.47-7.42 (m, 2H, Ar-H), 7.41-7.37 (m, 1H, Ar-H), 6.67 (m, 1H, 4-py-H), $6.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{py}-\mathrm{H}\right), 6.54\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.25 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.38$ (s br, $2 \mathrm{H}, \mathrm{NH}_{2}$), $1.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.55 \mathrm{~Hz}, 6 \mathrm{H}\right.$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.6$ (s, NCS), 157.9, 149.7, 141.4, 138.5, 137.7, 126.1, 124.6, 122.4, 115.9, 114.1, 108.6 (s, py-C and $\mathrm{Ar}-\mathrm{C}$), $63.3\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.4\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. MS (ESI, positive mode) m/z (\%): 504 (50) $[\mathrm{M}-\mathrm{I}]^{+}, 1042$ (100) $2[\mathrm{M}-\mathrm{I}]^{+}+\mathrm{CH}_{3} \mathrm{OH}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{I}_{2} \mathrm{~N}_{3} \mathrm{SPd}(\mathrm{M}=631.63)$: C, 28.52; H, 2.71; N, 6.65; S, 5.08. Found: C, 28.92; H, 2.69; N, 6.54; S, 5.06\%.
4.6. trans-Diiodo(3-isopropylbenzothiazolin-2-ylidene)(3-iodopyridine)palladium(II) (4)

Complex $\mathbf{4}$ was prepared as a yellow solid in analogy to $\mathbf{3}$ from $\mathbf{1}$ ($56 \mathrm{mg}, 0.052 \mathrm{mmol}$) and 3-iodopyridine ($24 \mathrm{mg}, 0.117 \mathrm{mmol}$). Yellow single-crystals of 4 were obtained from a diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Yield: $49 \mathrm{mg}(0.065 \mathrm{mmol}$, 62%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.32$ (s, 1H, 2-py-H), 9.06 (d, $\left.{ }^{3} J_{\mathrm{HH}}=5.05 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{py}-\mathrm{H}\right), 8.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.90$ (d, $\left.{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.55 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{py}-\mathrm{H}\right)$, $7.45\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.58 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.38\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.25 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\right.$ $\mathrm{H}), 7.14\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.60 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{py}-\mathrm{H}\right), 6.53\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.95 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92$ (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.95 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.8$ (s, NCS), 159.6, 152.7, 146.3, 141.2, 138.8, 126.1, 125.5, 124.6, 122.2, 115.9, 91.9 (s, py-C and $\mathrm{Ar}-\mathrm{C}$), $63.5\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 19.2\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. MS (ESI, positive mode) $\mathrm{m} /$ z (\%): 583 (100) $\left[\mathrm{M}-\mathrm{I}-\mathrm{CH}_{3} \mathrm{OH}\right]^{+}, 742$ (50) $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{I}_{3} \mathrm{~N}_{2} \mathrm{SPd} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{M}=827.42): \mathrm{C}, 23.23 ; \mathrm{H}, 2.07$; $\mathrm{N}, 3.39 ; \mathrm{S}$, 3.88. Found: C, 22.72; H, 1.90; N, 3.38; S, 4.66\%. The elemental analysis remained unsatisfactory despite repeated purification and analysis, possibly due to complex solvation.
4.7. trans-Diiodo(3-isopropylbenzothiazolin-2-ylidene)(4-tert-butylpyridine)palladium(II) (5)

Complex $\mathbf{5}$ was prepared as a yellow solid in analogy to $\mathbf{3}$ from $\mathbf{1}$ ($140 \mathrm{mg}, \quad 0.13 \mathrm{mmol}$) and 4 -tert-butyl-pyridine $(35 \mathrm{mg}$, 0.26 mmol). Yellow single-crystals of 5 were obtained from a diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Yield: 96 mg ($0.14 \mathrm{mmol}, 15 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.93$ (d, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=$ $6.90 \mathrm{~Hz}, 2 \mathrm{H}, 2,6-\mathrm{py}-\mathrm{H}), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.76(\mathrm{~d}$,
$\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.60 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.44\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.58 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}\right), 7.37$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.55 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.90 \mathrm{~Hz}, 2 \mathrm{H}, 3,5-\mathrm{py}-\right.$ H), $6.58\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.09 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.95 \mathrm{~Hz}\right.$, $\left.6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~S}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 189.9$ (s, NCS), 162.4, 153.6, 149.6, 141.3, 138.9, 126.0, 124.5, 122.2, $121.8,115.8$ (s, py-C and $\mathrm{Ar}-\mathrm{C}$), $63.3\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 35.1$ $\left(\mathrm{CH}_{3}\right)_{3}, 30.3\left(\mathrm{CH}_{3}\right)_{3}, 19.2\left(\mathrm{~s}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. MS (ESI, positive mode) m / z (\%): 544 (20) [M-I] ${ }^{+}, 819(100)[\mathrm{M}-\mathrm{I}]^{+}+2$ [tert-butyl-pyridine], 948 (80) $[\mathrm{M}-\mathrm{I}]^{+}+3$ [tert-butyl-pyridine]. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{SPd}(\mathrm{M}=673.71)$: C, 33.87; H, 3.74; $\mathrm{N}, 4.16 ; \mathrm{S}, 4.76$. Found: C, 34.42; H, 3.50; N, 4.11; S, 5.39\%.

4.8. X-ray diffraction studies

Single-crystals of complex 1 were obtained by slow evaporation of a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, while those of complexes 2-5 were obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions. The crystal of 5 contains two independent molecules in the asymmetric unit of the cell. Suitable crystals were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector, using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). The collecting frames of date, indexing reflection and determination of lattice parameters and polarization effects were done with the smart suite programs [75]. The integration of intensity of reflections and scaling was done by saint. The empirical absorption correction was done by SADabs [76]. The space group determination, structure solution and least-squares refinements on $|F|^{2}$ were carried out with the shelxtl [77]. The structures were solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms. Anisotropic thermal parameters were refined for the rest of the non-hydrogen atoms. The hydrogen atoms were placed in their ideal positions. A selected summary of crystal data for complexes 1-5 are summarized in Tables 2 and 3.

Supplementary material

Crystallographic data for salt \mathbf{A} and $\mathbf{1 - 5}$ in CIF format. This material is available free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: (+44) 1223-336-033; e-mail: mailto: deposit@ccdc.cam.ac.uk) or at www.ccdc.cam.ac.uk/conts/retrieving.html.

Acknowledgments

We thank the National University of Singapore (NUS), Ministry of Education and Agency for Science, Technology and Research for financial support (Grant R-143-000-277-305 and 143-000-361112) as well as the staff at the CMMAC of NUS for technical assistance. S.K.Y. acknowledges NUS for the research scholarship and K.E. Neo for discussion.

References

[1] F.E. Hahn, Angew. Chem., Int. Ed. 45 (2006) 1348.
[2] E.A.B. Kantchev, C.J. O'Brien, M.G. Organ, Angew. Chem., Int. Ed. 46 (2007) 2768.
[3] A.T. Normand, S.K. Yen, H.V. Huynh, T.S.A. Hor, K.J. Cavell, Organometallics 27 (2008) 3153.
[4] F.E. Hahn, M.C. Jahnke, Angew. Chem., Int. Ed. 47 (2008) 3122.
[5] R.W. Alder, M.E. Blake, C. Bortolotti, S. Bufali, C.P. Butts, E. Linehan, J.M. Oliva, A.G. Orpen, M.J. Quayle, Chem. Commun. (1999) 241.
[6] F. Guillen, C.L. Winn, A. Alexakis, Tetrahedron: Asymmetr. 12 (2001) 2083.
[7] P. Bazinet, G.P.A. Yap, D.S. Richeson, J. Am. Chem. Soc. 125 (2003) 13314.
[8] E. Despagnet-Ayoub, R.H. Grubbs, J. Am. Chem. Soc. 126 (2004) 10198.
[9] C.C. Scarborough, B.V. Popp, I.A. Guzei, S.S. Stahl, J. Organomet. Chem. 690 (2005) 6143.
[10] E. Despagnet-Ayoub, R.H. Grubbs, Organometallics 24 (2005) 338.
[11] C.C. Scarborough, M.J.W. Grady, I.A. Guzei, B.A. Gandhi, E.E. Bunel, S.S. Stahl, Angew. Chem., Int. Ed. 44 (2005) 5269.
[12] M. Iglesias, D.J. Beetstra, A. Stasch, P.N. Horton, M.B. Hursthouse, S.J. Coles, K.J. Cavell, A. Dervisi, I.A. Fallis, Organometallics 26 (2007) 4800.
[13] V. Calò, R. DelSole, A. Nacci, E. Schingaro, F. Scorgari, Eur. J. Org. Chem. (2000) 869.
[14] V. Calò, A. Nacci, L. Lopez, N. Mannarini, Tetrahedron Lett. 41 (2000) 8973.
[15] V. Calò, A. Nacci, L. Lopez, A. Napola, Tetrahedron Lett. 42 (2001) 4701.
[16] V. Calò, A. Nacci, A. Monopoli, L. Lopez, A.D. Cosmo, Tetrahedron 57 (2001) 6071.
[17] H.G. Raubenheimer, S. Cronje, J. Organomet. Chem. 617-618 (2001) 170.
[18] V. Calò, P. Giannoccaro, A. Nacci, A. Monopoli, J. Organomet. Chem. 645 (2002) 152.
[19] V. Calò, A. Nacci, A. Monopoli, M. Spinelli, Eur. J. Org. Chem. (2003) 1382.
[20] H.G. Raubenheimer, A.d. Toit, M.d. Toit, J. An, L.v. Niekerk, S. Cronje, C. Esterhuysen, A.M. Crouch, Dalton Trans. (2004) 1173.
[21] H.V. Huynh, N. Meier, T. Pape, F.E. Hahn, Organometallics 25 (2006) 3012.
[22] G.C. Vougioukalakis, R.H. Grubbs, J. Am. Chem. Soc. 130 (2008) 2234.
[23] S.K. Yen, L.L. Koh, F.E. Hahn, H.V. Huynh, T.S.A. Hor, Organometallics 25 (2006) 5105.
[24] S.K. Yen, L.L. Koh, H.V. Huynh, T.S.A. Hor, Dalton Trans. (2007) 3952.
[25] S.K. Yen, L.L. Koh, H.V. Huynh, T.S.A. Hor, Dalton Trans. (2008) 699.
[26] S.K. Yen, L.L. Koh, H.V. Huynh, T.S.A. Hor, Chem. Asian J. 3 (2008) 1649.
[27] D.S. McGuinness, M.J. Green, K.J. Cavell, B.W. Skelton, A.H. White, J. Organomet. Chem. 565 (1998) 165.
[28] J.C.C. Chen, I.J.B. Lin, Organometallics 19 (2000) 5113.
[29] C.W.K. Gstöttmayr, V.P.W. Böhm, E. Herdtweck, M. Groschem, W.A. Herrmann, Angew. Chem., Int. Ed. 41 (2002) 1363.
[30] W.A. Herrmann, V.P.W. Böhm, C.W.K. Gstöttmayr, M. Grosche, C.-P. Reisinger, T. Weskamp, J. Organomet. Chem. 617-618 (2001) 616.
[31] C.J. Mathews, P.J. Smith, T. Welton, A.J.P. White, D.J. Williams, Organometallics 20 (2001) 3848.
[32] M.S. Viciu, R.A. Kelly III, E.D. Stevens, F. Naud, M. Studer, S.P. Nolan, Org. Lett. 5 (2003) 1479.
[33] O. Navarro, R.A. Kelly III, S.P. Nolan, J. Am. Chem. Soc. 125 (2003) 16194.
[34] D. Kremzow, G. Seidel, C.W. Lehmann, A. Fürstner, Chem. Eur. J. 11 (2005) 1833.
[35] G.D. Frey, J. Schütz, E. Herdtweck, W.A. Herrmann, Organometallics 24 (2005) 4416.
[36] C.J. O’Brien, E.A.B. Kantchev, C. Valente, N. Hadei, G.A. Chass, A. Lough, A.C. Hopkinson, M.G. Organ, Chem. Eur. J. 12 (2006) 4743.
[37] M.G. Organ, S. Avola, I. Dubovyk, N. Hadei, E.A.B. Kantchev, C.J. O’Brien, C. Valente, Chem. Eur. J. 12 (2006) 4749.
[38] L. Ray, M.M. Shaikh, P. Ghosh, Dalton Trans. (2007) 4546.
[39] M.G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C.J. O’Brien, C. Valente, Chem. Eur. J. 13 (2007) 150.
[40] M.G. Organ, M. Abdel-Hadi, S. Avola, I. Dubovyk, N. Hadei, E.A.B. Kantchev, C.J. O'Brien, M. Sayah, C. Valente, Chem. Eur. J. 14 (2008) 2443.
[41] G. Shore, S. Morin, D. Mallik, M.G. Organ, Chem. Eur. J. 14 (2008) 1351.
[42] C. Valente, S. Baglione, D. Candito, C.J. O'Brien, M.G. Organ, Chem. Commun. (2008) 735.
[43] W.A. Herrmann, Angew. Chem., Int. Ed. 41 (2002) 1290.
[44] G. Altenhoff, R. Goddard, C.W. Lehmann, F. Glorius, Angew.Chem., Int. Ed. 42 (2003) 3690.
[45] K. Arentsen, S. Caddick, F.G.N. Cloke, A.P. Herring, P.B. Hitchcock, Tetrahedron Lett. 45 (2004) 3511.
[46] G. Altenhoff, R. Goddard, C. Lehmann, F. Glorius, J. Am. Chem. Soc. 126 (2004) 15195.
[47] O. Navarro, H. Kaur, P. Mahjoor, S.P. Nolan, J. Org. Chem. 69 (2004) 3173.
[48] H. Lebel, M.K. Janes, A.B. Charette, S.P. Nolan, J. Am. Chem. Soc. 126 (2004) 5046.
[49] N. Hadei, E.A.B. Kantchev, C.J. O’Brien, M.G. Organ, Org. Lett. 7 (2005) 1991.
[50] Y. Han, H.V. Huynh, L.L. Koh, J. Organomet. Chem. 692 (2007) 3606.
[51] E.S.N. Cotter, N.J. Booth, C.E. Canosa-Mas, R.P. Wayne, Atmos. Environ. 35 (2001) 2169.
[52] H.V. Huynh, Y. Han, J.H.H. Ho, G.K. Tan, Organometallics 25 (2006) 3267.
[53] W.I. Sundquist, D.P. Bancroft, S.J. Lippard, J. Am. Chem. Soc. 112 (1990) 1590.
[54] L. Brammer, J.M. Charnock, P.L. Goggin, R.J. Goodfellow, A.G. Orpen, T.F. Koetzle, J. Chem. Soc., Dalton Trans. (1991) 1789.
[55] M. Bortolin, U.E. Bucher, H. Ruegger, L.M. Venanzi, A. Albinati, F. Lianza, S. Trofimenko, Organometallics 11 (1992) 2514.
[56] F. Neve, M. Ghedini, A. Crispini, Organometallics 11 (1992) 3324.
[57] M. Cano, J.V. Heras, M. Maeso, M. Alvaro, R. Fernández, E. Pinilla, J.A. Campo, A. Monge, J. Organomet. Chem. 534 (1997) 159.
[58] M. Albrecht, P. Dani, M. Lutz, A.L. Spek, G.V. Koten, J. Am. Chem. Soc. 122 (2000) 11822.
[59] W. Yao, O. Eisenstein, R.H. Crabtree, Inorg. Chim. Acta 254 (1997) 105.
[60] L. Brammer, Dalton Trans. (2003) 3145.
[61] J.C. Lewis, J. Wu, R.G. Bergman, J. Ellman, Organometallics 24 (2005) 5737.
[62] Y. Zhang, J.C. Lewis, R.G. Bergman, J.A. Ellman, E. Oldfield, Organometallics 25 (2006) 3515.
[63] M. Brookhart, M.L.H. Green, G. Parkin, Proc. Natl. Acad. Sci. USA 104 (2007) 6908.
[64] A. Albinati, C.G. Anklin, F. Ganazzoli, H. Ruegg, P.S. Pregosin, Inorg. Chem. 26 (1987) 503.
[65] A. Albinati, C. Arz, P.S. Pregosin, Inorg. Chem. 26 (1987) 508.
[66] A. Albinati, P.S. Pregosin, F. Wombacher, Inorg. Chem. 29 (1990) 1812.
[67] S. Gómez-Bujedo, M. Alcarazo, C. Pichon, E. Álvarez, R. Fernández, J.M. Lassaletta, Chem. Commun. (2007) 1180.
[68] M.W. Gribble, Jr., J.A. Ellman, R.G. Bergman, Organometallics 27 (2008) 2152.
[69] H.V. Huynh, L.R. Wong, P.S. Ng, Organometallics 27 (2008) 2231.
[70] Y. Han, H.V. Huynh, G.K. Tan, Organometallics 26 (2007) 6447.
[71] For cyclometalated $\mathrm{Pt}(\mathrm{II})$ complexes with 4-aminopyridines, 2-aminopyridines and 2,6- diaminopyridines: J.H.K. Yip, Suwarno, J.J. Vittal, Inorg. Chem. 39 (2000) 3537.
[72] M. Castro, J. Cruz, H. López-Sandoval, N. Barba-Behrens, Chem. Commun. (2005) 3779.
[73] T.S. Thakur, G.R. Desiraju, Chem. Commun. (2006) 552.
[74] O. Yamauchi, T. Yajima, R. Fujii, Y. Shimazaki, M. Yabusaki, M. Takani, M. Tashiro, T. Motoyama, M. Kakuto, Y. Nakabayashi, J. Inorg. Biochem. 102 (2008) 1218.
[75] smart (Version 5.631) and saint (Version 6.63) Software Reference Manuals, Bruker AXS GmbH, Karlsruhe, Germany, 2000.
[76] G.M. Sheldrick, sadabs: A Software for Empirical Absorption Correction, University of Göttingen, Göttingen, Germany, 2001.
[77] shelxtl Reference Manual, Version 6.10, Bruker AXS GmbH, Karlsruhe, WI, 2000.

[^0]: * Corresponding author.

 E-mail address: andyhor@nus.edu.sg (T.S. Andy Hor).

